GCトラブルシューティングガイド

GC 分析の問題を解決するためのヒントとアドバイス

日常作業のチェック

GC 分析におけるほとんどのトラブルは、非常に単純な原因によって引き起こされています。原因の多くは正常な状態として見過ごされ(設定後に忘れられる) ています。トラブルを未然に防ぐには、以下の項目について確認してください。

- ガス: 供給圧力、注入口圧力、キャリアガスの平均線速度、 流量 (検出器、スプリットベント、セプタムパージ)
- 温度: カラム、注入口、検出器、トランスファライン
- システムパラメータ: パージ作動時間、検出器シグナル取込回数、 マスレンジなど
- ガス配管とトラップ: トラップの汚れ、リーク、劣化
- 注入口消耗品: セプタム、ライナ、O-リング、フェラル等の劣化、 汚れ、リーク
- サンプルの状態: 濃度、劣化、溶媒、保管状況
- シリンジ: サイズ、漏れ、ニードルの鋭さ、プランジャーの動き、 汚れ
- データシステム: 設定、装置との接続

ブランクラン

ホームページ:

確保できます。

www.agilent.com/chem/jp

テクニカルサポートも充実しています。

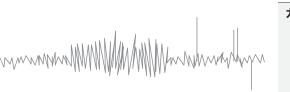
注入口やキャリアガスが汚染されている疑いがある (ゴーストピークやベースラインの異常などが発生する) 場合は、必ずブランクランを実行してください。

- 1. GC を 8 時間以上 40 ~ 50°C に保持します。
- 2. 通常の温度条件と機器設定を使用して、ブランクランを 実行 (注入なしで GC 分析をスタート) します。
- 3. このブランクランのクロマトグラムを作成します。
- 4. 最初のブランクランが完了したら、すぐに 2 回目のブランクランを実行します。最初の分析が完了してから、5 分以内に 2 回目の分析を開始してください。
- 5. 2回目のブランクランのクロマトグラムを作成して、最初の クロマトグラムと比較します。
- 6. 2回目のクロマトグラムの方がピークの数が多く、ベース ラインが不安定な場合は、キャリアガスの供給配管、また はキャリアガス自体が汚染されている可能性があります。
- 7. 2回目のクロマトグラムの方がピークの数が少なく、ベースラインドリフトが非常に小さい場合は、キャリアガス、およびキャリアガスの供給配管は比較的清潔です。

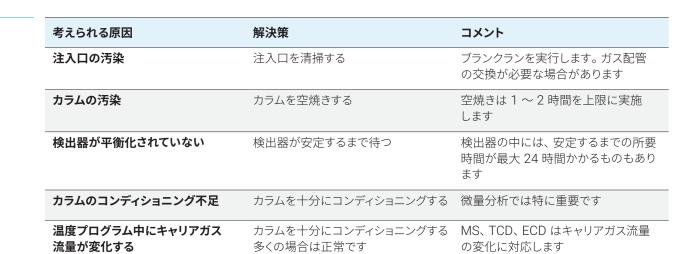
Agilent GC ソリューションは、最高レベルの分析性能によって日々の

生産性向上を支援します。アジレントならではの高い信頼性を誇り、

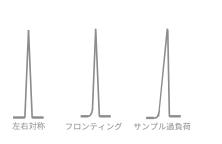
アジレントの GC の革新技術によって、ラボで求められる信頼性を


Agilent J&W GC Columns

ゴーストピークまたは キャリーオーバー

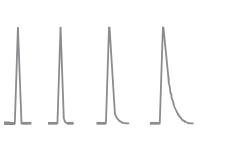

考えられる原因	解決策	コメント
サンプルと共に汚染物質が 導入された	サンプルまたは溶媒をクリーンアップ する	サンプル作成プロセスの見直しが必要 です
注入口の汚染	注入口を清掃し、ライナ、ゴールド シール、およびセプタムを交換する	ブランクランを実行します。ガス配管の 交換が必要な場合があります。サンプル の逆流防止 (注入量を減らす、注入口の 温度を下げる、より大きい容量のライナ を使用する) を検討します
セプタムのブリード	セプタムを交換する	注入口温度に適した高品質のセプタム を使用します
GC に注入する前のサンプルの汚染	考えられる汚染源に備えてサンプルの 取扱い手順 (サンプルのクリーン アップ、取扱い、輸送、保管状態) を 確認する	ガスボンベの交換後に発生する場合が あります
半揮発性物質による汚染 (似たようなリテンションタイムを持つサンプルピークはりもピーク幅が広い)	カラムを空焼きする。溶媒でカラムを 洗浄する。注入口、キャリアガス、また はキャリアガス配管の汚染を点検する	空焼きは 1 ~ 2 時間を上限に実施します。 溶媒洗浄は結合相および架橋結合相

ベースラインノイズが多い


考えられる原因	解決策	コメント
注入口の汚染	注入口を清掃し、ライナ、ゴールド シール、およびセプタムを交換する	ブランクランを実行します。 ガス配管の 交換が必要な場合があります
カラムの汚染	カラムを空焼きする	空焼きは 1 ~ 2 時間を上限に実施 します
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	結合相および架橋結合相でのみ実施 します
		注入口の汚染を点検します
検出器の汚染	検出器を清掃する	通常、ノイズは時間と共に増加し、 突然増加することはありません
汚染されたガス、または低品質の ガス	高品質のガスを使用する。 ガス トラップの劣化や漏れも点検する	ガスボンベの交換後に発生する場合が あります
検出器内にカラムを深く入れすぎて いる	カラムを取り付け直す	カラム取り付けの適切な長さについて は、GC のマニュアルを参照してください
検出器のガス流量が正しくない	ガス流量を推奨値に調節する	適正流量については、GC のマニュアル を参照してください
MS、ECD、TCD の使用時の ガスリーク	リーク部分を見つけて修復する	通常、リークはカラムフィッティングまた は注入口部分で発生します
検出器のフィラメント、ランプ、または エレクトロンマルチプライアの寿命	該当部品を交換する	
セプタムの劣化	セプタムを交換する	注入口温度に適した高品質のセプタム

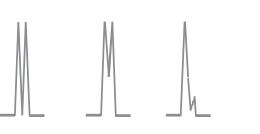
#### ベースラインが不安定 または乱れる




を使用します

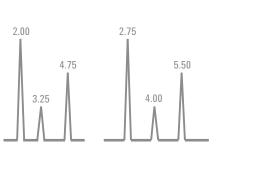
#### ピークのフロンティング




考えられる原因	解決策	コメント
カラムの過負荷	カラムに流すサンプル量 (注入量、希釈割合) を減らし、 スプリット比を増やす	ピークのフロンティングが発生する最も 一般的な原因です
カラムの取り付けが正しくない	カラムを取り付け直す	カラム取り付けの適切な長さについて は、GC のマニュアルを参照してください
注入方法	注入方法を変更する	通常、プランジャ押し込み時の注入失敗やシリンジニードルにサンプルが残っていることが原因です。オートサンプラの使用を推奨します
化合物が注入溶媒に非常に 溶けやすい	溶媒を変更する。リテンションギャップ が役立つことがあります	微量分析では特に重要です
サンプルと溶媒が混ざっていない	サンプル溶媒を別の溶媒に変更する	両方の溶媒の極性や沸点の差が大きい とさらに悪化します

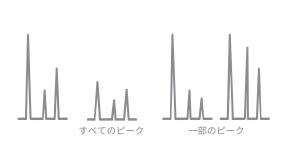
#### ピークのテーリング




考えられる原因	—————————————————————————————————————	コメント
ラスラ110 <b></b>	<b>开</b> 从来	
カラムの汚染	カラムの先端をカットする	カラム先端から 0.5 ~ 1 m を切り取り ます
	溶媒でカラムを洗浄する	結合相および架橋結合相でのみ実施 します
		注入口の汚染を点検します
カラムの活性化	修復不可。カラムを交換する	活性化合物が影響を受けやすいです
溶媒と固定相の極性の不適合	サンプル溶媒を別の溶媒に変更する	分析初期の溶出ピークや溶媒の立ち 上がりに最も近い溶出ピークでは テーリングが大きくなります
	リテンションギャップを使用する	リテンションギャップは $3\sim 5$ m で十分です
スプリットレス注入やオンカラム 注入で溶媒効果がない	カラム初期温度を下げる	リテンションタイムの増加と共にピーク のテーリングが減少します
スプリット比が低すぎる	スプリット比を増加する	スプリットベントからの流量を 20 ml/min 以上にします
カラムの取り付けが正しくない	カラムを取り付け直す	初期の溶出ピークのテーリングが 大きくなります
一部の活性化合物で常に テーリングが発生	カラムの種類を検討する	アミンやカルボン酸で多く見られ ます

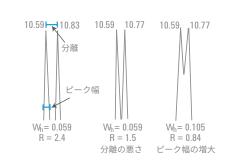
#### ピークの割れ




考えられる原因	解決策	コメント
注入方法	注入方法を変更する	通常、プランジャ押し込み時の注入失敗 やシリンジニードルにサンプルが残って いることが原因です。オートサンプラの 使用を推奨します。
サンプルと溶媒が混ざっていない	サンプル溶媒を別の溶媒に変更する	両方の溶媒の極性や沸点の差が大きい とさらに悪化します
カラムの取り付けが正しくない	カラムを取り付け直す	カラム取り付けの適切な長さについて は、GC のマニュアルを参照してください
注入口でのサンプル分解	注入口の温度を下げる	温度が低すぎると、ピークが広がったり、 テーリングが発生することがあります
	オンカラム注入に変更する	オンカラム注入口が必要です
サンプルのフォーカシングが不十分	リテンションギャップを使用する	スプリットレス注入とオンカラム注入の 場合

#### リテンションタイムの変動




考えられる原因	解決策	コメント
キャリアガス速度の変化	キャリアガス速度を確認する	すべてのピークが同じ方向にほぼ同じ ようにシフトします
カラム温度の変化	カラム温度を確認する	すべてのピークが同様にシフトするとに 限りません
カラム寸法の変化	カラムが分析条件と同じものであるこ とを確認する	保持されない化合物でキャリアガス 速度を測定します
化合物濃度の大幅な変化	異なるサンプル濃度を試す	隣接するピークにも影響することがあります。 サンプルの過負荷は、スプリット比を増加するかサンプルを希釈して解します
注入口の漏れ	注入口の漏れを点検する	通常、ピークサイズも変化します
ガス配管の詰まり	詰まった配管を清掃するか、交換する	スプリットラインにより多く見られます。 流量コントローラとソレノイドバルブも 点検します
セプタムの漏れ	セプタムを交換する	ニードル先端部を点検します
サンプル溶媒が不適切	サンプル溶媒を別の溶媒に変更する リテンションギャップを使用する	スプリットレス注入の場合

#### ピークサイズの変化



考えられる原因	解決策	コメント
検出器の応答の変化	ガス流量、温度、および設定を確認 する	すべてのピークが同様に影響を受ける とは限りません
	バックグラウンドレベルまたはノイズを 確認する	原因が検出器ではなく、注入口他システムの汚染による場合があります
スプリット比の変化	スプリット比を確認する	すべてのピークが同様に影響を受ける とは限りません
パージ作動時間の変化	パージ作動配管を点検する	スプリットレス注入の場合
注入量の変化	注入方法を確認する	注入量に直線性がありません
サンプル濃度の変化	サンプル濃度サンプル濃度が正しいこ とを確認する	サンプルの分解、蒸発、温度や pH の変化によって濃度が変化することがあります
リンジの漏れ	別のシリンジを使用する	漏れたサンプルはプランジャを通過した りニードルの外側に流れるので、目視確 認が困難なことがあります
カラムの汚染	カラムの先端をカットする	カラム先端から $0.5\sim1$ m を切り取ります
	溶媒でカラムを洗浄する	結合相および架橋結合相でのみ実施 します
カラムの活性化	修復不可。カラムを交換する	活性化合物が影響を受けやすいです
共溶出	カラム温度、または固定相を変更する	カラム温度を下げて、ピークのショルダ またはテーリングの形状を確認します
インジェクタのディスクリミ ネーションの変化	同じインジェクタパラメータを使用 する	スプリット注入への影響は多大です
サンプルの逆流	注入量を減らす。より大きいライナを 使用する。注入口温度を下げる	溶媒の量を減らし、流量を増やすことが 最も効果的です
注入口の汚染によるサンプル分解	インジェクタを清掃し、ライナ、ゴールド シールを交換する	注入口には、不活性化処理済みライナ とグラスウールのみを使用します

### 分解能の低下



考えられる原因	解決策	コメント
分離の悪さ		
カラム温度が異なる	カラム温度を確認する	他のピークでも違いが目視で確認 できます
カラム寸法または固定相が異なる	カラムが分析条件と同じものであるこ とを確認する	他のピークでも違いが目視で確認 できます
別のピークとの共溶出	カラム温度を変更する	カラム温度を下げて、ピークのショルダ またはテーリングの形状を確認します
ピーク幅の増大		
キャリアガス速度の変化	キャリアガス速度を確認する	リテンションタイムも変化します
カラムの汚染	カラムの先端をカットする	カラム先端から $0.5\sim1$ m を切り取ります
	溶媒でカラムを洗浄する	結合相および架橋結合相でのみ実施 します
注入口条件の変化	注入口の設定を確認する	特に、スプリット比、ライナ、温度、 注入量を確認します
サンプル濃度の変化	異なるサンプル濃度を試す	高濃度でピーク幅が広がります
不適切な溶媒効果、フォーカシング が不十分	オーブン温度を下げる。高品質の溶媒を使用する。サンプルと液相の極性を合わせる。 リテンションギャップを使用する	スプリットレス注入の場合



本文書に記載の情報、説明、製品仕様等は予告なしに変更されることがあります。 アジレント・テクノロジー株式会社 ® Agilent Technologies, Inc. 2018 Printed in Japan, November 1, 2018